
Summary
Multiple-input-multiple-output (MIMO) technology has been adopted by many wireless systems
to exploit the spatial diversity of the channel. This application note shows an efficient
implementation of beamforming functionality on AI Engine arrays in Xilinx® Versal™ AI Core
devices. The proposed architecture consists of three kernels with slight differences and is
scalable to various matrix sizes and throughput requirements. The design methodology is
applicable to many use cases requiring high-throughput matrix multiplication including, but not
limited to, 5G wireless communication.

Download the reference design files for this application note from the from the Xilinx® website.
For detailed information about the design files, see Reference Design.

Introduction
5G wireless communication systems have enhanced multiple-input-multiple-output (MIMO)
technology by employing a larger number of antennas for higher spectral efficiency than that of
previous generations (3GPP Std TS 38.212). In MIMO systems, spatially uncorrelated data
streams can be transmitted and received simultaneously in the same spectrum as if the
communication channel were layered into many independent subchannels. The following figure
shows the beamforming of an orthogonal frequency division multiplex (OFDM) system with four
layers and six antennas.

Application Note: Versal™ AI Core Devices

Beamforming Implementation on AI
Engine

XAPP1352 (v1.0) January 11, 2021

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 1

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=f2f5d886-09d5-454f-a274-dc21d0da689e;d=xapp1352-beamforming-ai-engine.zip
http://www.3gpp.org/dynareport/38212.htm
https://www.xilinx.com

Figure 1: Beamforming in OFDM Systems

Freq

Time

Layer
Freq

Time

Antennas

x0,0 x0,2 x0,3x0,1 y0,0

y0,1
y0,2

y0,3
y0,4

y0,5

h0,0
h0,1
h0,2
h0,3
h0,4
h0,5

h1,0
h1,1
h1,2
h1,3
h1,4
h1,5

h2,0
h2,1
h2,2

h2,3
h2,4
h2,5

h3,0
h3,1
h3,2

h3,3
h3,4
h3,5

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

=
=
=
=
=
=

h0,0 h0,1 h0,2 h0,3 h0,4 h0,5
h1,0 h1,1 h1,2 h1,3 h1,4 h1,5
h2,0 h2,1 h2,2 h2,3 h2,4 h2,5

h3,0 h3,1 h3,2 h3,3 h3,4 h3,5

+
+
+
+

+
+
+
+

+
+
+
+

=
=
=
=

+
+
+
+

+
+
+
+

Downlink

Uplink

x0,0
x0,0
x0,0
x0,0

x0,0

x0,1
x0,1

x0,1
x0,1
x0,1

x0,2

x0,2

x0,2
x0,2
x0,2

x0,3
x0,3

x0,3
x0,3
x0,3

x0,0

x0,1
x0,2

x0,3

y0,0

y0,0

y0,0
y0,0

y0,1 y0,3 y0,4 y0,5

y0,1
y0,1
y0,1

y0,2

y0,2

y0,2
y0,2

y0,3
y0,3

y0,3

y0,4
y0,4

y0,4

y0,5

y0,5

y0,5

x0,0

x0,1
x0,2

x0,3

y0,0
y0,1

y0,2

y0,3

y0,4

y0,5

X24181-072920

A wireless base station is made up of baseband and radio units, and its complexity is proportional
to the number of layers and antennas, respectively. The beamforming module is located between
the baseband and radio units and its complexity is proportional to the product of the number of
layers and antennas. In 5G MIMO systems with a larger number of antennas to support more
layers, the complexity of beamforming is as high as 320 times that of 4G LTE, and this has
become one of the major challenges to system design.

Table 1: Complexity Comparison Between 4G LTE and 5G NR Carriers

Carrier Type 4G LTE 5G NR
Channel Bandwidth 20 MHz 100 MHz

Number of Antennas 8 64

Number of Layers 2 16

Radio Complexity Normalized to 1 40x

Baseband Complexity Normalized to 1 40x

Beamforming Complexity Normalized to 1 320x

The Xilinx AI Engine is designed for intensive compute in various applications including, but not
limited to, 5G wireless. One AI Engine tile consists of one AI Engine, 32KB data memory, and two
DMA engines for automatic data transportation. Every AI Engine is equipped with a vector
processor that is capable of 32 real-by-real 16-bit multiply-and-accumulate (MAC) operations in
one clock cycle. The memory access unit inside the AI Engine reads 512 bits operands and writes
256 bits computation results every clock cycle to match the capability of the vector processor. In
a single Versal™ AI Core device, there are hundreds of AI Engine tiles interconnected through
cascading buses, AXI streams, and shared local memory according to the dataflow defined by the
user at compilation time. For more detailed information about AI Engines, see Xilinx AI Engine and
Their Applications (WP506).

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 2Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=2

Figure 2: Block Diagram of an AI Engine Tile

Load & Store
Address

Generation
Units

Instruction
Fetch &

DecodeUnit

Program
Memory
(16KB)

Accumulator
Stream FIFO

Control,
Debug

& Trace

Floating Point
512b SIMD
Vector Unit

Fixed Point
512b SIMD
Vector Unit

Stall
Handler

Scalar
Register Files

32b Scalar
RISC Unit

Vector Register Files

M
em

 I/
F

AX
IM

 S
w

itc
h

AX
IS

 N
or

th

Mem I/F

M
em

 I/
FData

Memory
(32KB)

MM2S
DMA

Mem
I/F

S2MM
DMA

AXIS West AXIS East

AI Engine Array Memory Access
AXI Stream
AXI MM
Cascade Stream

AX
IS

 S
ou

th

X24960-010721

Using traditional programmable devices, 5G NR beamformers are built with thousands of DSPs
and tens of thousands of look-up tables (LUTs) and flip-flops (FFs). It can easily take several
months to develop such complicated systems. This application note shows that the same
functionality can be built on tens of AI Engine tiles with three kernels that can be coded in the C
programming language within days. The AI Engine design is guaranteed to run at a minimum of
1 GHz on Versal™ AI Core devices without the need to worry about timing closure. When the
system specification changes, thanks to the scalability of the AI Engine design, only slight
modifications to the C code are required.

Features
This application note proposes a method to implement wideband beamforming functionality on
the AI Engine with the following features:

• A generic framework for matrix multiplication that covers a wide range of matrix sizes and
throughput requirements.

• A scalable architecture that only needs a small number of kernels to be developed.

• An example submatrix multiplication kernel design that fits into one AI Engine tile and
achieves 85% overall efficiency with low latency.

Beamforming Formulation
As shown in Figure 1, beamforming can be described as linear operations. In the downlink, the
transmit signal on each antenna is a weighted summation of the layers, and in the uplink the
equalized signal on each layer is a linear combination of the signals received on the antennas.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=3

Write the vector of layers on subcarrier k as Xk = [xk,0, xk,1, xk,2, …, xk,M-1]T, where M is the
number of streams; and the vector of frequency-domain transmit signal on the antennas as Yk =
[yk,0, yk,1, yk,2, …, yk,N-1] T, where N is the number of antennas, and []T is vector transpose
operation. Beamforming can be formulated as a matrix multiplication:

where H is a complex N x M matrix often known as beamforming coefficient, and L is the number
of subcarriers sharing the same coefficient matrix H. Similarly, in the uplink the beamforming
function can be written as

The preceding two equations suggest that both downlink and uplink beamforming can be
formulated as matrix multiplications. In the downlink, the matrix dimension is (N x M) times (M x
L), which requires N x M x L complex multiplication and addition (CMAC) operations. In the
uplink, though the matrix dimension becomes (M x N) times (N x L), the number of CMACs is also
(N x M x L).

According to the definition of OFDM, the time duration of one OFDM symbol with occupied
bandwidth B is equal to the inverse of the subcarrier spacing, which is given by K/B, where K is
the number of subcarriers. For downlink beamforming, (K/L) matrix multiplications of Equation 1
must be performed in (K/B) time, so the number of CMACs in one second is given by:

In 3GPP OFDM systems with cyclic prefix and some subcarriers not requiring beamforming, the
number of CMACs given by the preceding equation is higher than the minimum requirement but
is desirable for system dimensioning purpose.

In a 100 MHz 5G system of 64 antennas and 32 layers, downlink beamforming requires as high
as (64 x 32 x 100e6) = 204.8G CMACs per second. At a 400 MHz clock, two DSP58s can
compute 400M CMACs in one second, and it takes (204.8G / 400M x 2) = 1024 DSP58s to
implement the same functionality.

In Versal™ AI Core devices, one AI Engine is capable of 8G CMACs per second. For the previous
example, assuming 80% runtime ratio of the AI Engines, it takes (204.8G / 8G / 80%) = 32 AI
Engines to implement the matrix multiplication, that is, one AI Engine is equivalent to 32 DSP58
blocks.

For a MIMO system with M layers and N antennas, the matrix multiplication of Equation 1 can
be divided into (N/u) sub-matrix multiplication chains, each of which consists of (M/v) sub-matrix
multiplication units that handle (u-by-v) times (v-by-L) matrix multiplication each. More
specifically, Equation 1 can be written as follows:

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=4

where Yk is a matrix of (u-by-L) complex entries, Xm is a matrix of (v-by-L) complex elements, Hk,m
is a (u-by-v) complex matrix, and they must satisfy

The preceding equation has a unified submatrix multiplication dimension of (u-by-v) times (v-by-
L) that can be implemented on a single AI Engine. A chain of (M/v) AI Engines can be cascaded to
accumulate the partial CMAC results for the final output.

Figure 3: Matrix Multiplication on AI Engine Array

The previous figure shows a possible implementation of Equation 4 on the AI Engine array. Each
AI Engine handles (u-by-v) times (v-by-L) matrix multiplication, and the cascading bus connects
the accumulation register of one AI Engine to another to form a full-precision accumulation
chain. Every row of AI Engines implements Equation 5 for a given k, and the output matrix Yk is
written into the memory of the last AI Engine tile in a row. The input to each AI Engine is
provided by programmable logic and consists of a (u-by-v) matrix Hk,m and a (v-by-L) data matrix

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=5

Xm, both of which are stored in the local memory by DMAs while the AI Engine is computing the
product of the previous H and X in the double buffer. All AI Engines in one column of the array
share the same data matrix Xm, so one input data stream can be multicast to all of them through
AXI switches built in the AI Engine array. Note that the DMAs and AXI switches are configured
by Xilinx tools automatically according to the dataflow defined by the user at compilation time.

Figure 4: Timing Diagram of Pipelining in One AI Engine

kX Transfer

H Transfer k

Computation

(v L) ns

(v u) ns

k
(v u L)/8 ns

Y Transfer k
(u L) ns

k+1

k+1

k+2

k+2

k+1 k+2

k+1

k+3

k+3

k-1

k-1

X24183-070920

In one AI Engine, data transfer and computation are pipelined for high throughput. As shown in
the previous figure, the time needed for data transfer and computation depends on the design
parameters u, v, and L. To achieve 100% MAC efficiency in the AI Engine, the time needed for
data transfer should not exceed that of computation, which means the following equation must
hold.

The solution is:

In 3GPP LTE and 5G NR systems, the minimum value of L is 12, and setting (u = v = 8) is a good
strategy to make sure the overall throughput is not limited by data transfer bandwidth.

Moreover, the input and output AXI buses will carry time-multiplexed data of v and u channels.
Limited by the throughput of each AXI bus at 1 Gs/s, the maximum signal bandwidth is upper
bounded by the sample rate of each data channel given by

All 5G NR carriers transmitted in FR1 frequency bands (below 7.125 GHz) are within 100 MHz,
which fit in the above bandwidth range nicely. When there are multiple carriers and the total
bandwidth is over 100 MHz, multiple instances of beamforming modules are used to meet the
throughput requirement.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=6

Larger u and v values reduce the number of AI Engines, however, the total amount of compute
given by Equation 3 must be satisfied, that is:

After simplification:

Equation 10 gives an upper bound of the product of u and v, which can be translated into a lower
bound of the number of AI Engines or the overall MAC efficiency of each AI Engine. For
100 MHz 5G NR carriers where B=100 MHz, the upper bound is u v ≤ (8000/100) = 80. The
selection of (u = v = 8) represents a MAC efficiency of the vector processor in a single AI Engine
of (8 × 8/80) = 80% and is optimal for many wireless systems where the numbers of antennas
and layers are both integer multiples of eight.

Case Studies
The generic matrix multiplication architecture proposed in this application note is scalable to
various beamforming configurations. For illustration purposes, a 5G NR 100 MHz system is
studied in this section and the following figure shows the beamformer implementation of several
use cases. All the designs are based on a highly scalable architecture that can be built with a small
number of kernels differing in the input and output interfaces only:

1. Each AI Engine performs (8 × 8) times (8 × 12) submatrix multiplication, that is, u = v = 8,
L = 12.

2. The throughput of every AXI4-Stream for the input and output data is 8 × 100=800 MSPS,
which is 80% of the capacity of 1 GSPS.

3. The throughput of every AXI4-Stream for the coefficients is 8 × 8/(12 × 1/100 MHz) = 533
MSPS.

Because the memory access of every AI Engine is within its own tile, no conflict with other AI
Engines is expected.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=7

Figure 5: 5G NR 100 MHz Beamforming Implementation on AI Engine

In narrowband systems, Equation 10 indicates a higher upper bound on the product (u v) and
therefore more freedom in the selection of system parameters. One strategy is to select (u = v ≤
sqrt(8G/B)) such that downlink and uplink can share the same set of kernels. For an LTE 20 MHz
system of 64 antennas and 16 streams, B=20 MHz, it is possible to select (u = v = 16) and
construct the beamformer as those shown in Figure 6 (a) and (b).

Another strategy is to combine the AXI streams of data and coefficient into one, which is
equivalent to changing the parallel transfer of X and H to serial. To keep the vector processor
fully occupied, they must satisfy

In 3GPP systems where L=12, Equation 11 can be simplified to

Figure 6 (c) shows an alternative downlink beamforming architecture constructed with AI Engines
handling (u = 32) antennas and (v = 8) layers each. However, because the number of layers is less
than 32 in this case, the uplink will have a different set of kernels as shown in Figure 6 (b).

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=8

Figure 6: LTE 20 MHz 64 Antenna 16 Stream Beamforming Implementation on AI
Engine

Stm[0:7]
& Coef

Ant[32:63]Ant[0:31]

(c) Alternative Downlink
(u=32, v=8)

Ant[0:15]
Stm[0:15]

Coef

(b) Uplink (u=v=16)

AIE
(16x16)

AIE
(16x16)

AIE
(16x16)

Stm[0:15] Ant[32:63]Ant[0:31]

(a) Downlink (u=v=16)

Coef Coef

AIE
(16x16)

AIE
(16x16)

AIE
(16x16)

Ant[16:31]

Coef
Ant[32:47]

Coef

AIE
(16x16)

AIE
(16x16)

Ant[48:63]

Coef

AIE
(32x8)

AIE
(32x8)

AIE
(32x8)

AIE
(32x8)

Stm[8:15]
& Coef

X24185-072920

When there is a special need for u and v to be certain values, it is possible to construct a
wideband beamformer with multiple instances of narrow-band ones at the cost of additional
programmable logic (PL) for data multiplexing and demultiplexing. The following figure shows an
example of 5G NR 100 MHz beamformer made up of four instances of 25 MHz beamforming
units shown in the previous figure. Though the total number of AI Engines is the same as that of
a single instance of wideband beamformer, the demux block at 1.6 GSPS and mux block at 6.4
GSPS will require considerable logic resources.

Figure 7: 5G NR 100 MHz Beamformer Using Four 25 MHz Beamforming Units

16x64 BF
(25 MHz)

16x64 BF
(25 MHz)

16x64 BF
(25 MHz)

16x64 BF
(25 MHz)

RB 4k

RB 4k+1

RB 4k+2

RB 4k+3

Demux

(PL)

Input

400 MSPS

400 MSPS

RB 4k

RB 4k+1

RB 4k+2

RB 4k+3

1.6 GSPS

Mux

(PL)
Output

AI Engine PLPL

400 MSPS

400 MSPS

1.6 GSPS

1.6 GSPS

1.6 GSPS

1.6 GSPS

6.4 GSPS

X24186-121520

Kernel Design Details
One feature of the proposed beamforming architecture is that only a small number of kernels is
required by various system configurations. For instance, in 5G NR 100 MHz systems all the
beamformers shown in Figure 5 can be built with three kernels, as shown in the following figure.
Depending on the location of the kernels in the cascading chain, they are named first, middle,
and last. All the kernels implement (8 x 8) times (8 x 12) matrix multiplication and only differ in
the input and output interfaces. The first kernel in the cascading chain does not have cascading
input, while the last one writes the output to local memory instead of the cascading bus.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=9

Figure 8: Three Kernels Required by 5G NR Beamforming

O
ut

Coef

Input
Cascade

In In

Input

O
ut

sy
s

Co
ef

Co
ef

Output

Coef

Input
Cascade

In In

Input

sy
s

Co
ef

Co
ef

Output
Cascade

CoefIn In

Input

sy
s

Co
ef

Co
ef

Output
Cascade

BF_Fst

(8x8)

BF_Mid

(8x8)

BF_Lst

(8x8)

(a) First (c) Last(b) Middle

X24187-072920

Every beamforming kernel performs eight MAC4 operations on one column of eight inputs {x0,
x1, x2, …, x7} to compute 8 outputs {y0, y1, y2, …, y7}. Each MAC4 operation takes eight
coefficients and two inputs, and stores the result in a register of 384 bits. Two accumulation
registers are allocated for {y0, …, y3} and {y4, …, y7}, respectively. At the end of computation, the
partial summations are sent to the next AI Engine for further accumulation, or output to local
memory after shift, round, and saturation. The following figure illustrates this process, which
repeats L times until all the subcarriers sharing the same coefficient matrix have been processed.

Figure 9: Two mul4 Operations on Input Data x0 and x1

y0
y1
y2
y3
y4
y5

h0
h1
h2
h3
h4
h5

y6

y7

y8
y9
y10
y11
y12
y13
y14

y15

y88
y89
y90
y91
y92
y93
y94

y95

... =

h6
h7

h8
h9
h10
h11
h12
h13
h14
h15

h16
h17
h18
h19
h20
h21
h22
h23

h24
h25
h26
h27
h28
h29
h30
h31

h32
h33
h34
h35
h36
h37
h38
h39

h40
h41
h42
h43
h44
h45
h46
h47

h48
h49
h50
h51
h52
h53
h54
h55

h56
h57
h58
h59
h60
h61
h62
h63

x0
x1
x2
x3
x4
x5
x6

x7

x8
x9
x10
x11
x12
x13
x14

x15

x88
x89
x90
x91
x92
x93
x94

x95

...

X24192-080320

Figure 10: Two mac4 Operations on Input Data x2 and x3

y0
y1
y2
y3
y4
y5

h0
h1
h2
h3
h4
h5

y6

y7

y8
y9
y10
y11
y12
y13
y14

y15

y88
y89
y90
y91
y92
y93
y94

y95

... =

h6
h7

h8
h9
h10
h11
h12
h13
h14
h15

h16
h17
h18
h19
h20
h21
h22
h23

h24
h25
h26
h27
h28
h29
h30
h31

h32
h33
h34
h35
h36
h37
h38
h39

h40
h41
h42
h43
h44
h45
h46
h47

h48
h49
h50
h51
h52
h53
h54
h55

h56
h57
h58
h59
h60
h61
h62
h63

x0
x1
x2
x3
x4
x5
x6

x7

x8
x9
x10
x11
x12
x13
x14

x15

x88
x89
x90
x91
x92
x93
x94

x95

...

X24191-070920

Figure 11: Two mac4 Operations on Input Data x4 and x5

y0
y1
y2
y3
y4
y5

h0
h1
h2
h3
h4
h5

y6

y7

y8
y9
y10
y11
y12
y13
y14

y15

y88
y89
y90
y91
y92
y93
y94

y95

... =

h6
h7

h8
h9
h10
h11
h12
h13
h14
h15

h16
h17
h18
h19
h20
h21
h22
h23

h24
h25
h26
h27
h28
h29
h30
h31

h32
h33
h34
h35
h36
h37
h38
h39

h40
h41
h42
h43
h44
h45
h46
h47

h48
h49
h50
h51
h52
h53
h54
h55

h56
h57
h58
h59
h60
h61
h62
h63

x0
x1
x2
x3
x4
x5
x6

x7

x8
x9
x10
x11
x12
x13
x14

x15

x88
x89
x90
x91
x92
x93
x94

x95

...

X24190-070920

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=10

Figure 12: Two mac4 Operations on Input Data x6 and x7

y0
y1
y2
y3
y4
y5

h0
h1
h2
h3
h4
h5

y6

y7

y8
y9
y10
y11
y12
y13
y14

y15

y88
y89
y90
y91
y92
y93
y94

y95

... =

h6
h7

h8
h9
h10
h11
h12
h13
h14
h15

h16
h17
h18
h19
h20
h21
h22
h23

h24
h25
h26
h27
h28
h29
h30
h31

h32
h33
h34
h35
h36
h37
h38
h39

h40
h41
h42
h43
h44
h45
h46
h47

h48
h49
h50
h51
h52
h53
h54
h55

h56
h57
h58
h59
h60
h61
h62
h63

x0
x1
x2
x3
x4
x5
x6

x7

x8
x9
x10
x11
x12
x13
x14

x15

x88
x89
x90
x91
x92
x93
x94

x95

...

X24188-070920

The following figure is a timing diagram of the inner loop of the bf8x8_fst kernel. Before the
loop, registers bufa and bufb are initialized with the first half of coefficients {h0, h1, …, h31}.
One column of input data {x0, x1, … x7} is loaded into the register dat. During the first four clock
cycles of the loop, in parallel to the MAC operations on the first half of coefficients, the second
half is read into the registers. At clock cycle 7, {y0, y1, y2, y3} are computed and sent to the next
AI Engine via the cascading bus, followed by {y4, y5, y6, y7}. From clock cycle 9 to 16, the
computation of the next 8 data is performed in reverse order; the MAC operations start from the
second half of the coefficients already available in the registers, and then the first half is loaded
at cycle 13 and 14. The inner loop takes 16 clock cycles, during which 16 mul4/mac4
operations, 10 memory loads, and four cascading bus pushes are executed in parallel. The vector
processor is fully occupied without any idle cycle. For L subcarriers, the inner loop runs for L/2
iterations.

Figure 13: Timing Diagram of Inner Loop of bf8x8_fst Kernel

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=11

The kernel bf8x8_mid reads the partial summation from the previous AI Engine before starting
the first MAC operation. In the following C code, the intrinsic get_scd() loads the data on the
cascading bus into an accumulation register, and the intrinsic mac4() resumes the accumulation
without wasting any clock cycles.

acca = mac4(getc_scd(), bufa, 0, 0x3210, 8, dat, 0, 0x0000, 1);
accb = mac4(getc_scd(), bufa, 4, 0x3210, 8, dat, 0, 0x0000, 1);

The kernel bf8x8_lst writes the final computation result into local memory. The vector {y0, y1,
…, y7} is 256 bits can be written into memory in one clock cycle if the data come from a 768-bit
8-lane accumulation register. Because every mac4 operation only updates four lanes, the
intrinsics ext_lo, ext_hi, upd_lo, and upd_hi are needed. The first four instructions of the
loop are shown in the following for comparison with those of other kernels:

acc = upd_lo(acc, mac4(getc_scd(), bufa, 0, 0x3210, 8, dat, 0,0x0000, 1));
acc = upd_hi(acc, mac4(getc_scd(), bufa, 4, 0x3210, 8, dat, 0,0x0000, 1));
acc = upd_lo(acc, mac4(ext_lo(acc), bufb, 0, 0x3210, 8, dat, 2,0x0000, 1));
acc = upd_hi(acc, mac4(ext_hi(acc), bufb, 4, 0x3210, 8, dat, 2,0x0000, 1));

Graph Design Details
The dataflow of an AI Engine design is defined by a C++ class referred to as the graph design. In
the beamforming reference design, one cascading chain is defined in the subgraph
bfCascadingChain. The template parameters xoff and yoff define the coordinate of the
leftmost AI Engine and len specifies the length of the cascading chain in terms of the number of
AI Engines. Because every AI Engine needs two inputs for data and coefficients, respectively, the
whole chain has two len inputs and only one output.

template <int xoff, int yoff, int len>
class bfCascadeChain: public graph {
private:
 kernel core[len];
public:
 port<input> din[len];
 port<input> cin[len];
 port<output> out;
 bfCascadeChain() {
 ...
 } ;
}; // end of class bfCascadeChain

With this subgraph, beamforming designs can be constructed by instantiating several cascading
chains of certain lengths. For a 5G NR 100 MHz system with 64 antennas and 32 layers,
downlink beamforming can be described as eight cascading chains of length 4, and uplink as four
chains of length 8. Some example graph C++ code is shown in the following table.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=12

Downlink

//-------------------------------------
// DL 64 Antenna 32 Layer
//-------------------------------------
template <int xoff, int yoff>
class DL64A32L: public graph {
private:
bfCascadeChain<xoff, yoff+0, 4> bf0;
 bfCascadeChain<xoff, yoff+1, 4> bf1;
 bfCascadeChain<xoff, yoff+2, 4> bf2;
 bfCascadeChain<xoff, yoff+3, 4> bf3;
 bfCascadeChain<xoff+4, yoff+0, 4> bf4;
 bfCascadeChain<xoff+4, yoff+1, 4> bf5;
 bfCascadeChain<xoff+4, yoff+2, 4> bf6;
 bfCascadeChain<xoff+4, yoff+3, 4> bf7;
public:
 port<input> din[4];
 port<input> cin[32];
 port<output> out[8];
 DL64A32L(){
 ...
 };
}; // end of DL64A32L

Uplink

//-------------------------------------
// UL 64 Antenna 32 Layer
//-------------------------------------
template <int xoff, int yoff>
class UL64A32L: public graph {
private:
 bfCascadeChain<xoff, yoff+0, 8> bf0;
 bfCascadeChain<xoff, yoff+1, 8> bf1;
 bfCascadeChain<xoff, yoff+2, 8> bf2;
 bfCascadeChain<xoff, yoff+3, 8> bf3;

public:
 port<input> din[8];
 port<input> cin[32];
 port<output> out[4];

 UL64A32L(){
 ...
 };
}; // end of UL64A32L

Xilinx tools compile the graph design and automatically generate block diagrams to represent the
compilation result. The following two figures show one example using the 64-antenna 32-layer
100 MHz beamforming reference design. Every colored bubble represents one AI Engine, and
gray boxes are DMAs and memories used by the design. Xilinx tools automatically configure the
DMAs, AXI switches, and PL-AI Engine interfaces for the graph design.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=13

Compilation Result of 5G NR 100 MHz 64-Antenna 32-Layer Beamforming Reference
Design

Figure 14: Downlink

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=14

Figure 15: Uplink

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=15

Design Validation
AI Engine designs can be simulated for functional verification and throughput validation before
integration with programmable logic. The following figure shows the validation workflow for the
AI Engine beamforming reference design.

Random input test vectors are generated by a MATLAB® script and golden test data are
computed by the MATLAB reference model. AI Engine designs are compiled and tested in a
System C simulation environment (AI Engine simulator) using the input test vectors. The AI
Engine simulation results are stored in data files that record the output samples along with their
time stamps. The time duration from the first output sample to the last can be measured by the
time stamps, and the number of output samples can be counted. Their quotient gives an estimate
of throughput.

Figure 16: AI Engine Design Validation Workflow

Generate
Random

Input

Golden Matlab
Reference Model

AI Engine Design
System C
Emulation

Input Test
Vector

Output
Test

Vector

Golden
Test

Vectors

Diff to check
Bittrue match

Estimate
throughput by
time stamps

batch.m

make all

make check_op

make get_tp

X24189-121520

The beamforming reference design has 12 output AXI streams, each of which contains the data
of eight antennas or eight layers. A makefile is included in the design to compare all 12 outputs
with the golden test vectors generated by MATLAB. Table 2 (a) shows a bit-true match with the
reference output for the AI Engine beamforming design. The makefile also estimates the
throughput from all output files. Table 2 (b) shows that all 12 output AXI streams achieve the
target throughput of 800 MSPS with more than 5% margin.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=16

Table 2: Example Design Validation Result

(a) Functional Verification (b) Throughput Estimation

> make check_op
DLBF 0 - diff=0 -
DLBF 1 - diff=0 -
DLBF 2 - diff=0 -
DLBF 3 - diff=0 -
DLBF 4 - diff=0 -
DLBF 5 - diff=0 -
DLBF 6 - diff=0 -
DLBF 7 - diff=0 –
ULBF 0 - diff=0 -
ULBF 1 - diff=0 -
ULBF 2 - diff=0 -
ULBF 3 - diff=0 -

> make get_tp
DLBF 0 Throughput= 856.493 Msps (>800Msps)
DLBF 1 Throughput= 855.901 Msps (>800Msps)
DLBF 2 Throughput= 856.512 Msps (>800Msps)
DLBF 3 Throughput= 856.436 Msps (>800Msps)
DLBF 4 Throughput= 855.939 Msps (>800Msps)
DLBF 5 Throughput= 855.901 Msps (>800Msps)
DLBF 6 Throughput= 856.493 Msps (>800Msps)
DLBF 7 Throughput= 855.901 Msps (>800Msps)
ULBF 0 Throughput= 855.977 Msps (>800Msps)
ULBF 1 Throughput= 855.92 Msps (>800Msps)
ULBF 2 Throughput= 855.901 Msps (>800Msps)
ULBF 3 Throughput= 855.92 Msps (>800Msps)

Reference Design
Download the reference design files for this application note from the from the Xilinx® website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 3: Reference Design Matrix

Parameter Description
General

Developer name Xilinx

Target devices Versal™ AI Core

Source code provided? Yes

Source code format (if provided) MATLAB® script, AI Engine C code, and Makefile script

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

No

Simulation

Functional simulation performed Yes

Timing simulation performed? No

Test bench provided for functional and timing simulation? No

Test bench format C code

Simulator software and version Vitis™ 2020.2

SPICE/IBIS simulations No

Implementation

Implementation software tool(s) and version Vitis™ 2020.2

Static timing analysis performed? No

Hardware Verification

Hardware verified? Yes

Platform used for verification Xilinx VCK190

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=f2f5d886-09d5-454f-a274-dc21d0da689e;d=xapp1352-beamforming-ai-engine.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=17

Conclusion
5G NR massive MIMO systems require intensive computation for matrix multiplication. It is
shown that 100 MHz 64-antenna 32-layer 5G NR beamforming can be implemented on 64 AI
Engines with three kernels with slight differences, while the same functionality needs 2048
DSP58 blocks and hundreds of thousands of LUTs and FFs to be implemented on programmable
logic. The proposed matrix multiplication implementation on AI Engines has a flexible and
scalable architecture applicable to a wide range of use cases including, but not limited to, 5G
wireless.

References
These documents provide supplemental material useful with this guide:

1. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR;
Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)

2. Xilinx AI Engine and Their Applications (WP506)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
01/11/2021 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 18Send Feedback

http://www.3gpp.org/dynareport/38212.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=18

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and
MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are
the property of their respective owners.

Beamforming Implementation on AI Engine

XAPP1352 (v1.0) January 11, 2021 www.xilinx.com
Application Note 19Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1352&Title=Beamforming%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=19

	Beamforming Implementation on AI Engine
	Summary
	Introduction
	Features
	Beamforming Formulation
	Case Studies
	Kernel Design Details
	Graph Design Details
	Compilation Result of 5G NR 100 MHz 64-Antenna 32-Layer Beamforming Reference Design

	Design Validation
	Reference Design
	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

