Military Solution

INDEX

1. Combiner/Divider 1:2 WAY
2. Combiner/Divider 1:4 WAY
3. Combiner/Divider 1:8 WAY
4. DUAL 1:4 WAY Combiner/Divider
5. Combiner/Divider 1:8 WAY
6. 9 Way Combiner/Divider
7. Low Capacity Trunk Radio System for Band Pass Filter
8. KU Band Pass Filter
9. 11 Channels Switched Bank Filter
10. SP4T \& 8 Filters Switched Bank
11. TX \& RX Dual 7Channel Filters Switched Bank
12. Guided Weapon Main Receiver for Seeker
13. Wide Band Continuous Multiplexer
14. Wide Band Up/Down Converter
15. DDS Hopping Synthesizer
16. Phase Matched Wide Band Matrix Switch

1. 1:2 Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, Methods 501.4 and 502.4 Procedures I and II

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500 MHz
Insertion Loss	0.8 dB max
VSWR	1.4:1 / 1.5:1 max
Isolation	20.0dB min
Amplitude Balance	$\pm 0.3 \mathrm{~dB}$ max
Phase Balance	$\pm 5^{\circ}$ max
Input Average Power	35 dBm
Environmental CONDITIONS	MIL-STD-810F, Methods 501.4 and 502.4, Procedures I and II

2. 1:4 Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, Methods 501.4 and 502.4 Procedures I and II

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500MHz
Insertion Loss	0.2 dB max
VSWR	1.2:1 / 1.3:1 max
Isolation	20.0dB min
Amplitude Balance	$\pm 0.2 \mathrm{~dB}$ max
Phase Balance	$\pm 2^{\circ}$ max
Input Average Power	20dBm
Environmental CONDITIONS	MIL-STD-810F, Methods 501.4 and 502.4, Procedures I and II

3. 1:8 Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, Methods 501.4 and 502.4 Procedures I and ㅍ

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500 MHz
Insertion Loss	0.8 dB max
VSWR	1.2:1 / 1.3:1 max
Isolation	20.0dB min
Amplitude Balance	$\pm 0.2 \mathrm{~dB}$ max
Phase Balance	$\pm 2^{\circ}$ max
Input Average Power	10 dBm
Environmental CONDITIONS	MIL-STD-810F, Methods 501.4 and 502.4, Procedures I and II

4. DUAL 1:4 Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, Methods 501.4 and 502.4,

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500 MHz
Insertion Loss	0.8 dB max
Isolation	1.4:1 / 1.5:1 max
20.0dB min	
Phalitude Balance	$\pm 0.3 \mathrm{~dB}$ max
Input Average Power	$\pm 5^{\circ}$ max
Environmental CONDITIONS	200mW MIL-STD-810F, Methods 501.4 and 502.4,

5. 1:8 Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, method 509.2 (5\% NaCl for 48 hours)

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500MHz
Insertion Loss	1.5 dB max
VSWR	1.4:1 / 1.5:1 max
Isolation	24.0dB min
Output amplitude unbalance (between outputs)	$\pm 0.3 \mathrm{~dB}$ max
Phase Balance	$\pm 5^{\circ}$ max
Input Average Power	200mW
Environmental CONDITIONS	MIL-STD-810F, method 509.2

6. 9 Way Combiner/Divider

The power dividers are useful for dividing \& combining signals power dividers employee lumped element circuits up to DC-5GHz, 7 distributed elements beyond 2 GHz or so, usually stripline.

O Key Features

- High Performance
- MIL-STD-810F, Methods 501.4 and 502.4,

O Specification

Item	Spec.
Operating Frequency Range	3100 to 3500 MHz
Insertion Loss	12.2 dB max
VSWR	1.4:1/1.5:1 max
Isolation	22.0 dB min
Amplitude Balance	$\pm 0.5 \mathrm{~dB}$ max
Phase Balance	$\pm 5^{\circ}$ max
Input Average Power	1W
Size(mm)	360(w) x 52.2(d) x 14.5(h) mm
Environmental CONDITIONS	MIL-STD-810F, Methods 501.4 and 502.4,

7. Low Capacity Trunk Radio System for Band Pass Filter

The LCTRS BPF is useful for MLR system
TICN: Tactical Information Communication Network
The LCTRS BPF is Cavity Method

O Key Features

- High Performance
- High Reliability

O Specification

| Item | Spec. |
| ---: | :--- | :--- |
| Operating Frequency Range | $2175.2 \sim 2236.4 \mathrm{MHz}$ |
| Insertion Loss | 1.0 dB Max |
| VSWR | $1.3: 1$ |
| Rejection | 22.0 dB min |
| Pass Band Ripple | $\pm 0.5 \mathrm{~dB}$ max |
| Rejection | $52.7 \mathrm{dBc} @ 2250 \mathrm{MHz}$ |
| $80 \mathrm{dBc} @ 2058.8 \mathrm{MHz}$ | |
| Input Average Power | 10 W |
| Size(mm) | $123(\mathrm{w}) \times 66(\mathrm{~d}) \times 66(\mathrm{~h}) \mathrm{mm}$ |
| Operating Temperature | $-32^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$ |

8. KU Band Pass Filter

2 stage 6-pole band pass filter(BPF) is designed and implemented by using triple-mode cavity for Receiver seeker module payload system. The BPF has a 500 MHz bandwidth at the center frequency of 14.5 GHz (Ku-band) and the response of the filter is the Chebyshev function. The cavity filter uses two orthogonal modes and one mode

O Key Features

- High Performance
- High Reliability

O Specification

Item	Spec.
Center frequency	14.5 GHz
Bandwidth	500MHz
Insertion Loss	1.0 dB Max
VSWR	1.2:1
Rejection	18.0 dB min
Pass Band Ripple	$\pm 0.5 \mathrm{~dB}$ max
Input Average Power	10W
Size(mm)	40(w) x 20(d) $\times 14$ (h) mm
Operating Temperature	$-35^{\circ} \mathrm{C} \sim+75^{\circ} \mathrm{C}$

9. 11 Channels Switched Bank Filter

The SBF is a switch bank filter, part of the WB Receiver front end, intended to assure the receiver's IP2 performance specification The SBF have one input and 2 outputs. One output is for 7 bands and the second output is for bands 1-3 \& 5,6 and have amplifiers that turn on only when a specific band activate.
There is an option to By-Pass the amplifiers

O Key Features

- High Performance
- High IIP2
- 11 Channels

O Specification

| Item | Spec. |
| ---: | :--- | :--- |
| Operating Frequency Range | $20 \mathrm{MHz} \sim 3.0 \mathrm{GHz} /$ 11Channels |
| Noise Figure | $<5 \mathrm{~dB}$ |
| Gain | $14 \pm 1 \mathrm{~dB}$ |
| Noise figure | $7 \pm 1 \mathrm{~dB}$ |
| IIP2 | CH 4~11 +55dBm
 CH 1~3 +65dBm |
| Switching Time | $<100 \mu \mathrm{sec}$ |
| Size(mm) | $135(\mathrm{w}) \times 70(\mathrm{~d}) \times 13.5(\mathrm{~h}) \mathrm{mm}$ |
| Environmental CONDITIONS | MIL-STD-810F, Methods 501.4
 and 502.4, |

10. SP4T \& 8 Filters Switched Bank

The filter bank includes independent transmit channel (Tx path) and received channel (Rx path) with 4 filters for each path. Because the transmit channel and received topologic channel are the same (switches and filters) it is possible to offer them separately (two units 4 filters each) if it cost lower than one unit.

O Key Features

- High Performance
- High Rejection
- 4 Channels 8 Path

O Specification

Item	Spec.
Operating Frequency Range	$4400 \sim 5000 \mathrm{MHz} /$ Band 1~4
Insertion Loss (Tx/Rx)	$<3.1 \mathrm{~dB}$
Input Power	16W (C.W) min
Switching Time	2uSec
Isolation (between ports)	80dB min.
Return Loss (all ports)	15dB min
Size(mm)	190(w) x100(d) x 60(h)mm
Environmental CONDITIONS	MIL-STD-810E MIL-STD-461E

11. TX \& RX Dual 7Channel-Filters Switched Bank

The filter bank includes independent transmit channel (Tx path) and received channel (Rxpath) with 7 filters for each path. TX Path accommodates a high power of 20W, and RX Path is designed to have a gain of 7 to 12 dB .
TX Path and RX Path are independent, each setting any channel.

O Key Features

- High Performance
- High Rejection
- Dual 7 Channels 2 Path

O Specification

Item	Spec.
Operating Frequency Range	1300 ~2700MHz / Dual 7Channel
Insertion Loss (TX/Rx)	TX: <3.8dB / RX : Gain 7~12dB
TX Input Power / RX Input P1dB	20W (C.W) / O dBm
Switching Time	5uSec
Isolation (between ports)	80dB min.
Return Loss (all ports)	15dB min
Size(mm)	210(w) x100(d) x 60(h)mm
Environmental CONDITIONS	MIL-STD-810E MIL-STD-461E

12. Guided Weapon Main Receiver for Seeker

Guided Weapon Main Receiver seeker module is very High speed switching time.
It is for using KU Band
O Key Features

- Application for Guided Weapon Defense Missile
- High Performance
- High Switch Isolation
- Low power DC Consumption

O Specification

Item	Spec.
Operating Frequency Range	$15.8 \mathrm{GHz} \sim 16 \mathrm{GH}$
Noise Figure	$<5 \mathrm{~dB}$
Gain	$33 \pm 3 \mathrm{~dB}$
RFG Attenuation Value	$32+3 \mathrm{~dB} /-4 \mathrm{~dB}(28 \sim 35)$
IF BW	$(-7.5 \mathrm{MHz} \sim+7.5 \mathrm{MHz})$
Switching Time	$<70 \mathrm{~ns}$
Size (mm)	$80(\mathrm{w}) \times 40(\mathrm{~d}) \times 25(\mathrm{~h}) \mathrm{mm}$
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

13. Wide Band Continuous Multiplexer

For wideband receiver application, the $20 \sim 3000 \mathrm{MHz}$ spectrum is divided into N -channel filters before and after amplification stage.

O Key Features

- Application for EW, ISR
- 20~3000MHz multi-channel support
- Configuration of continuous channel filter bank
- Maintaining a cross over band phase linearity
- High performance harmonic rejection
- Low loss and good wideband gain flatness

O Specification

Item	Spec.
Operating Frequency Range	$20 \sim 3,000 \mathrm{MHz}$
Harmonic Rejection	70 dBc
3rd Order Intercept Point	40 dB
Gain \& Flatness	$10 \mathrm{~dB} \pm 2 \mathrm{~dB}$
Noise Figure	$<5 \mathrm{~dB}$
Size (mm)	$150(\mathrm{w}) \times 200(\mathrm{~d}) \times 24(\mathrm{~h}) \mathrm{mm}$
Operating Temperature	$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$

14. Wide Band Up-Down Converter

It is for up-converting input signal of $1.5-400 \mathrm{MHz}$ with bandwidth of 250 MHz generated by DDS. It amplifies and converts input signal by mixers, amplifiers and filters. Up-converted signal will be placed into any output spectrum of 1.53000MHz. It generates its own reference signal that is used as a reference source for LO.

O Key Features

- Application for EW, ISR
- Wide band frequency conversion functions
- $1.5 \sim 3,000 \mathrm{MHz}$ frequency range
- BIT functions for Output level status check
- 10 MHz built-in reference signals and its distribution

O Specification

Item	Spec.
Input Frequency	$1.5 \sim 400 \mathrm{MHz}$
Output Frequency	$1.5 \sim 3,000 \mathrm{MHz}$
Operating Bandwidth	250 MHz
Frequency adjusting speed	$<50 \mathrm{us}$
Gain \& Flatness	$0 \mathrm{~dB} \pm 2 \mathrm{~dB}$
Size (mm)	$220(\mathrm{w}) \times 160(\mathrm{~d}) \times 24(\mathrm{~h}) \mathrm{mm}$
Operating Temperature	$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$

15. DDS Hopping Synthesizer

In some application, fine tune, fast lock and wide frequency rang are very critical issues. This module satisfy all of specifications. It consists of Direct Digital Synthesis and PLL Synthesizer. Because of fast lock it can generate high speed hopping signal in the $20 \sim 3000 \mathrm{MHz}$ frequency band.

O Key Features

- Application for C4I, EW, ISR
- 20~3,000MHz wideband hopping support
- High speed hopping frequency
- High performance Phase Noise
- High Frequency Resolution,1Hz
- Wide range variable output power
- Self BIT check function

O Specification

Item	Spec.
Operating Frequency Range	$20 \sim 3,000 \mathrm{MHz}$
Frequency Resolution	$<10 \mathrm{~Hz}$
Output Power	$0 \mathrm{dBm} \sim-90 \mathrm{dBm} / 1 \mathrm{~dB}$ step
Frequency hopping speed	$<50 \mathrm{us}$
Phase Noise	$<-90 \mathrm{dBc} / \mathrm{Hz} @ 10 \mathrm{KHz}$
Size (mm)	$213(\mathrm{w}) \times 138.6(\mathrm{~d}) \times 17(\mathrm{~h}) \mathrm{mm}$
Operating Temperature	$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$

16. Phase Matched Wide Band Matrix Switch

Phase Matched wideband matrix switch module is 18×18 Matrix Switch. 18-port output of the high-band/low-band switching can selectively accept the input of the low-band(9Port) and High-band(9Port) in the 20~3000MHz band.

O Key Features

- Application for EW, ISR
- High Performance Phase Matched channel
- High Isolation
- Compact Physical Form

O Specification

Item	Spec.
Operating Frequency Range	$20 \sim 3,000 \mathrm{MHz}$
Insertion Loss	$<-8 \mathrm{~dB}$
Phase Balance	$< \pm 3^{\circ}$
Chanel Amplitude	$\pm 0.5 \mathrm{~dB}$
Chanel Isolation	$<-80 \mathrm{dBc}$
Switching Time	$<5 \mu \mathrm{~s}$
Size (mm)	$222(\mathrm{w}) \times 54(\mathrm{~d}) \times 24(\mathrm{~h}) \mathrm{mm}$
Operating Temperature	$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$

